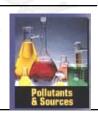
Analysis of Air Toxics Emission Inventories for Area Sources in the Great Lakes Region



Introduction

- ♦ Great Lakes Regional Emission Inventory
 - ♦ Initiated in 1986
 - ◆ To foster cooperation among the Great Lakes states in quantifying the loading of toxic substances
 - ♦ Funded by

Introduction

- ♦ Great Lakes Regional Emission Inventory
 - ♦ Client/server software
 - Regional Air Pollutant Inventory Development System (RAPIDS)
 - ◆ 1993 Inventory 03/1999
 - ♦ Area and point sources
 - ♦ 49 pollutants
 - ◆ 1996 & 1997 Inventory 02/2000 & 04/2001
 - ♦ Area, point, and mobile sources
 - ♦ 82 pollutants

Introduction

- ♦ Area Sources
 - ♦ Stationary sources not included in point source category
 - ♦ Small and ubiquitous
 - ♦ Collectively release large amounts of emissions
 - ♦ Pose significant threat to public health in urban areas
 - ◆ Lack of appropriate guidance and resources on the emission estimation

Methodology

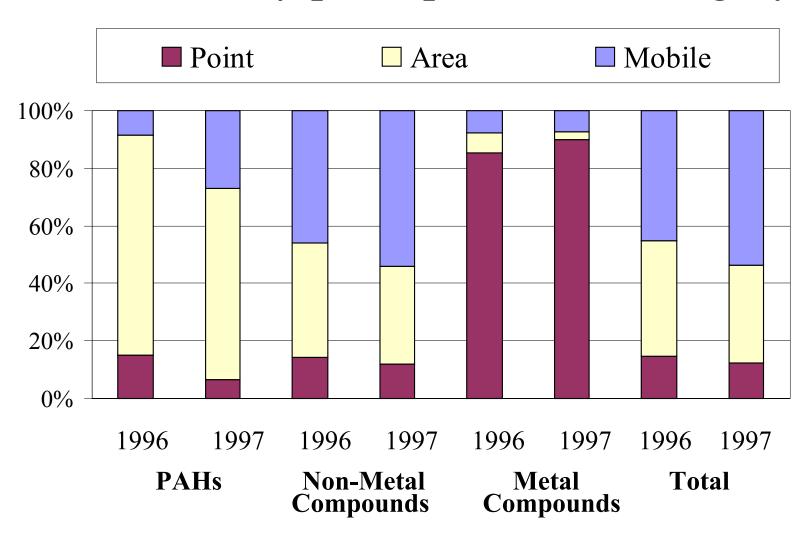
- ♦ Regional Effort
 - ♦ High level of coordination consistency
 - ♦ Information collection
 - ♦ Methodology
 - ◆ Data management
 - ♦ Others
 - ♦ Great Lakes Commission project management
 - **♦** Technical Steering Committee

Methodology

- ♦ Select Potential Source Categories
 - ◆ Emission Inventory Improvement Program (EIIP)
 - ◆ Factor Information Retrieval (FIRE) Data System
 - ♦ 1996 National Toxics Inventory (NTI)
 - ♦ Previous regional/state inventories
 - ♦ Others
- ♦ Examine the Feasibility and Develop Protocols
 - ♦ Each state or province one or two categories
 - ♦ 16 categories inventoried for 1996 & 1997

Methodology

- ◆ Compile the Inventory
 - ◆ Each jurisdiction respective portion
 - ♦ Guidance of protocols
 - ♦ Identification and location of emission sources
 - ♦ Identification of possible pollutants
 - ◆ Recommendation of suggested and alternative methods
 - ♦ Activity data collection
 - ♦ Recommendation on emission factors
 - **♦** References
- ♦ Quality Assurance and Quality Control
 - ♦ State-level and regional level


Results and Discussions

♦ Overall

Number of pollutants in inventories

Pollutants Category	Targeted Number	Estimated Number In 1996	Estimated Number In 1997
PAHs	16	16	16
Non-Metal Compounds	53	49	47
Metal Compounds	13	12	12
Total	82	7	75

Emissions by principal source category

Comparison of Area Source Emissions between Calendar Year 1996 and 1997

1996 Emissions by principal source category for individual pollutants

Pollutants Category	Estimated	> 2/3 Emissions		
	Number	Point	Area	Mobile
PAHs	16	The state of the s	15	0
Non-Metal Compounds	49	27	7	7
Metal Compounds	12	10	1	0
Total	77	38_	23 -	7
	Anna Park			

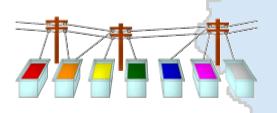
The 1996 highest and the lowest emissions in the Great Lakes Region

Pollutant	Emissions (lbs)	Ranking By Emissions	
Toluene	545,821,726	1	
2,4,5-Trichlorophenol	0.02	77	

Results and Discussions

- ◆ Prioritization of Area Sources (1996)
 - ◆ Agricultural Pesticide Application
 - ♦ Only source for 3 pollutants: atrazine, hexachlorobenzene, and trifluralin
 - ♦ Architectural Surface Coatings
 - ♦ 10 Pollutants
 - ♦ Most significant source for ethylbenzene (48%)
 - ♦ Auto Body Refinishing
 - ♦ 5 Pollutants
 - ♦ Most significant source for xylenes (31%)

- ♦ Prioritization of Area Sources
 - ◆ Consumer and Commercial Solvent Use
 - ♦ 15 pollutants
 - ♦ Most noticeable contribution to glycol ethers (66%)
 - Dry Cleaning
 - ♦ 1 Pollutant tetrachloroethylene
 - ♦ Contribution of 80%
 - ♦ Gasoline Marketing
 - ♦ 12 Pollutants
 - ♦> 95% for 1,3-butadiene and di-n-butyl phthalate
 - ♦ ~ 50% for ethylene dichloride and m-xylenes

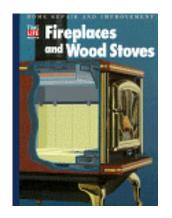

♦ Prioritization of Area Sources

- ♦ Graphic Arts
 - ♦ 9 Pollutants
 - ♦ ~ 100% for 2,4-toluene diisocyanate
- ♦ Industrial Surface Coating
 - ♦ 14 pollutants
 - ♦> 82% for ethylene dibromide, ethylene oxide and styrene
 - ♦ 26% for toluene
- **♦** Landfills
 - ♦ 25 Pollutants
 - ♦ Unique source for acrylonitrile and PCBs

- ♦ Prioritization of Area Sources
 - ♦ Marine Vessel Loading, Ballasting, and Transit
 - ♦ 7 Pollutants
 - ♦ Not significant for any pollutants
 - ◆ Public Owned Treatment Works
 - ♦ 19 Pollutants
 - ♦ Responsible for most emissions of acetaldehyde, acrolein, chloroform, formaldehyde, and vinyl chloride
 - ♦ Solvent Cleaning
 - ♦ 11 Pollutants
 - ♦ 48% 64% for 1,1,1-trichloroethane, methylene chloride, and p-xylenes
 - ♦ 98% for trichloroethylene

♦ Prioritization of Area Sources

- ♦ Chromium Electroplating
 - ♦ 2 Pollutants
 - ♦ Only source for chromium (6)
- ♦ Residential Fuel Combustion
 - ♦ 35 Pollutants
 - ◆ Primary source for all metals from area sources except for chromium (6)



♦ Prioritization of Area Sources

- ♦ Residential Wood Combustion
 - ♦ 30 Pollutants
 - ◆ Dominates area source emissions for all PAHs, benzene, phenol, TCDD, TCDF, PCDDs, PCDFs, and o-xylenes
- ◆ Traffic Marking
 - ♦ 8 Pollutants
 - ♦ Significant to carbon tetrachloride emissions (48%)

Lesson Learned

- ♦ Regional coordination is an effective way
- ♦ Barriers and obstacles exist

Lesson Learned

- ◆ Definitions Not Consistent
 - Dependent on data collection methods
 - ♦ Difficult to compare emissions among states
- Guidance Not Consistent and Not Comprehensive
 - ♦ Inadequate for all area source categories
 - ♦ Hard to judge appropriate emission factors
- ♦ Emission Trends Not Representative

Conclusions

- ♦ Area sources are significant contributors to the Great Lakes regional emissions of certain toxics
- ♦ Further improvement is needed for a more comprehensive and accurate inventory

